Innovations in Interventional Cardiology

Juan Carlos Samayoa MD Assistant Professor of Pediatrics Interventional Cardiology

What I am going to talk about?

1. A story that shows how important/fundamental this speciality is!!

2. An area that is changing rapidly and affecting patients.

First cath: Werner Forssmann

1966 Rashkind: septostomy

1977 Coronary angioplasty

1982 First balloon valvoplasty

1996 An

Amplatzer septal occluder

Jean Kan

Kurt Amplatz

"Modern" congenital intervention era 2000 onward

CHD: University of Minnesota

Kurt Amplatz, MD 1924-2019

C. Walton Lillehai, MD 1918-1999

2023	
	TPVR-S3 Piccolo Hybrid palliations/Flow restrictors ASD - Gore
2016 2010	Left atrial appendage occlusion MRI guided interventions Tricuspid valve repair
2010	MV stitch/ring repair Fontan Stent completion Aortic valve implantation
2000	Biodegradable Devices HLH / Ductal stenting TPVR - Melody
	PDA device Fetal BAV Coarctation stent PA RF perforation PA stent PDA coil
1990	Pulmonary angioplastyVSD devicePDA Umbrella ClosureAortic valve dilationPulmonary valve dilationCoarctation dilation
1980	Coil embolization ASD device
1970	PDA plug Balloon septostomy
1960	
1950	VSD / Cross Circulation ASD closure
40.50	BTT Shunt
1940	PDA ligation

The first prototype of a valved stent. This device did not function.

00	Bonhoeffer described the use of TPV in France
03	•First use of Melody TPV in England
05	•Canada •100th patient implant in England
06	 Europe FDA Investigational Device Exemption (IDE) subsmission- first commercially available TPV in North America CE Mark- first TPV available commercially, Health Canada approval
)7	•First US IDE study implant •Use in Saudi Arabia
99	 First use in Australia US FDA panel meeting
.0	 US FDA approval for Melody valve under Humanitarian device exemption (HDE) designation First investigational use of Harmony valve in Europe
.2	•Use in Bangladesh and Latin America
.4	 Investigational use of venous-P valve from Chicago and China
.5	•Premarket approval of Melody valve by US FDA
	•US FDA approval of SAPIEN XT (pulmonary) for PV replacement

Melody

Animation from Medtronic.com

Dr. Bonhoeffer work let directly to ...

- TAVR: Transcatheter aortic valve replacement
- Initially for inoperable adult patients but now low-risk population
- Outperforms surgery in every domaine
- USA: More than 74,000 TAVRs in the USA
 - Surgical valves: 59,000

And from there ...

The "era" of "structural" cardiac cath interventions was born

Most importantly for us: **Symbiosis**

Nothing exists in isolation

The structural intervention dollar brings ...

- Fundamental research
- Valve longevity
- Materials
- Miniturarisation
- Data collection and organization
- Influence

Transcatheter Pulmonary valve Implantation -Balloon -

The Medtronic Melody[®] pulmonic valve

The Edwards Lifesciences SAPIEN[™] valve

Large native outflow tracts

- The majority of native outflow in post-TOF patients are >29 mm
- The industry has grown up in this new speciality has given us a new generation of larger self-expanding valves aimed at the pulmonary artery

Transcatheter Pulmonary valve Implantation -Other -

• Medtronic Harmony valve

• Edwards Altera System

The Future

THE AUTUS VALVE

- Surgically implanted pulmonary valve replacement
- Novel biomimetic bileaflet design
- Inspired by the geometry of the human venous valve
- Fully synthetic
- Functions across a wide range of diameters
- Customizable implant diameter
- Designed to be balloon expanded via minimally invasive transcatheter approach as the patient grows

Transcatheter PDA closure in neonates

"Traditional" PDA closure ...

- Nearly all cases are done in the cath lab
- At least 5 kg in weight
- Requires:
 - General anesthesia
 - Femoral arterial access
 - Femoral vein access

Current Devices

ADO-1

AVP-II

PDA closure is one of the common transcatheter procedures in children

PDA Closure in "Premies"

- Very small
- Very young
- Very fragile
- PDA associated with
 - Pulmonary Hypertension
 - Bronchopulmonary dysplasia
 - NEC
 - IVH
 - Retinopathy
 - Renal problems

Affects more than 24,000 infants each year in the USA

Deciding which PDA to close is NOT always easy ...

- When a duct is "significant"?
- Is there a role for observation?
- Or other forms of treatment first?

PICCOLO Abbott

WHAT IS AMPLATZER PICCOLO?

Amplatzer Piccolo is the only U.S. approved device specifically designed and indicated for PDA closure in premature infants. Only Piccolo:

 \bigcirc

Has been developed for babies as small as 700g and ≥ 3 days old Has the most clinical data, proving excellent outcomes

Offers the widest range of sizes, enabling treatment of all duct types and sizes Is compatible with infant size, offering a low profile device and delivery system

ASD Closure Devices

Closure devices

- Amplatzer
 - septal occluder
 - PFO occluder
 - Cribriform
- Gore cardioform septal occluder

at**Heart** MEDICAL

LESS METAL, MORE OPTIONS

The reSept[™] ASD Occluder is the first device with a metal-free, bioresorbable frame. This novel device aims to overcome the limitations of current ASD treatment options and offers the potential to:

- Help reduce the risk of complications due to long-term presence of bulky metal in the heart.
- Enable future interventions that may not otherwise be possible due to metal barriers.

Stents

STENT IMPLANTATION

Coarctation stent placement

Pulmonary artery stenosis

Limitations of stent therapy

• Stents don't grow, children do..

4 month old LPA stenosis s/p surgery Treated with 4mm cobalt chromium coronary stent Doesn't reach final adult dimension (12-14mm)

Solutions

- Surgery
- Intentional stent fracture
- Use stents that 'unzip'
Biodegradable Stents

AMS 1		DESolve	
DREAMS 1		ART	
DREAMS 2		ART18Z (ART 2 nd Gen)	
Igaki-Tamai		IDEAL BTI	
BVS 1.0		IDEAL BioStent	
BVS 1.1		Amaranth	
REVA	e C ting y	Xinsorb	
ReZolve		ON-AVS	

At the present time, there are NO biodegradable stents available for use in pediatric patients with congenital heart disease

Illusicor stent (Tremedics Medical Devices LLC, TX, USA)
480 Biomedical stent (480 Biomedical Inc)
ZeBRa stent, Pediastent LLC, Cleveland, OH, USA

BRa Stent implanted in the aorta in a preclinica odel.

Renata STENT

<2MM

We implant the device at birth with the initial device size at less than 2mm.

8MM - 12MM

As the patient grows into an adolescent, the device can be gradually expanded.

>18MM

When the patient reaches adulthood, the device will have the capability to expand to over 18mm.

Other

Penumbra Lightning indigo aspiration system

https://youtu.be/DwrTQHcGuUQ

How we support those in need of transplantation

100,000+ PEOPLE ARE WAITING FOR A TRANSPLANT

On the Waiting List	National	Minnesota	North Dakota	South Dakota
Total Patients Waiting	103,817	2,279	126	365
Kidney	88,607	1,910	126	334
Liver	10,429	178	-	32
Pancreas	841	96	-	3
Kidney-Pancreas	1,955	170	-	4
Heart	3,397	89	-	-
Lung	991	34	-	-
Heart-Lung	35	2	-	-
Intestine	205	-	-	-

Waiting list data provided by Organ Procurement and Transplantation Network (OPTN) as of April 18, 2023. Data subject to change based on future data submission or correction.

Totals may be less than the sums due to patients included in multiple categories.

Percutaneous Temporary Support Options

Goals of use TMCS in CS

- Circulatory Support
- Ventricular Support
- Coronary Perfusion
- Provide Time: to define treatment strategy

ABIONED[®]

Recovering hearts. Saving lives.

CHILDREN'S IMPELLA PRESENTATION

Figure 1C. A comparison between the Impella LD and 5.0.

HEMODYNAMIC STABILIZATION WITH IMPELLA® DEVICES

2.5/CP/5.5 can all be placed axillary via cutdown for ambulation

IMPELLA[®] HEART PUMP: HOW IT WORKS

Placement in Left Ventricle

Conclusion

- A quick "run" through a couple of aspects of trans-catheter intervention in congenital heart disease
- A fundamental and exciting area of medicine
- Continually changing and developing over the last 30 years
- Many things that people (surgeons!) told us were impossible are now routine !

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.